17EC42
USN

Fourth Semester B.E. Degree Examination, Aug./Sept. 2020 Signals and Systems

Time: 3 hrs .
Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. Missing data, if any, may be suitably assumed.

Module-1

1 a. Explain the following with an example each :
i) Even and odd signal
ii) Aperiodic and periodic signal
iii) Energy and power signal.
(06 Marks)
b. Sketch the following signal :
i) $\mathrm{y}(\mathrm{t})=\mathrm{r}(\mathrm{t}+2)-\mathrm{r}(\mathrm{t}+1)-\mathrm{r}(\mathrm{t}-1)+\mathrm{r}(\mathrm{t}-2)$
ii) $y(t)=r(t+2)-r(t+1)-r(t-1)+r(t-2)$
(06 Marks)
c. Verify the following properties of system :
memoryless, casual, stable and some invariant $\mathrm{y}(\mathrm{n})=\mathrm{nx}(\mathrm{n})$.
(08 Marks)

OR

2 a. Sketch the even and odd parts of the signal shown in the Fig.Q2(a).

Fig.Q2(a)
(06 Marks)
b. Classify the following the following as an energy or power signal
i) $\mathrm{y}(\mathrm{t})=\mathrm{r}(\mathrm{t})-\mathrm{r}(\mathrm{t}-2)$
ii) $\mathrm{x}(\mathrm{t})=\left(1+\mathrm{e}^{-5 t}\right) \mathrm{u}(\mathrm{t})$.
(08 Marks)
c. Determine whether the following signals are periodic or not. If periodic find its fundamental time period.
i) $x[n]=5 \sin \left(\frac{7 \pi n}{12}\right)+8 \cos \left(\frac{14 \pi n}{8}\right)$
ii) $x(t)=\cos t+\sin \sqrt{2} t$.
(06 Marks)

Module-2

3 a. Prove the following properties of convolution :
i) Commutative
ii) Distributive.
(06 Marks)
b. Determine the conyolution of the following two signals $x(t)=e^{-3 t} u(t)$ and $h(t)=u(t+2)$.
c. Find the convolution of the following sequences

$$
x(n)=\beta^{n} u(n) \text { with }|\beta|<1 \text { and } h(n)=u(n-3) \text {. }
$$

(07 Marks)

OR

4 a. Determine the convolution sum of the given sequence $x(n)=\{1,2,3,1\}$ and $h(n)=\{1,2,1,-1\}$ sketch output.
(06 Marks)
b. The impulse response of the system is given by $h(t)=u(t)$. Determine the output of the system for an input $\mathrm{x}(\mathrm{t})=\mathrm{e}^{-\alpha \mathrm{t}} \mathrm{u}(\mathrm{t})$.
(08 Marks)
c. Prove the associative property of convolution.

Module-3

5 a. Find the step response for the impulse response $h(t)=u(t+1)-u(t-1)$.
(06 Marks)
b. Find the overall impulse response of a cascade of two systems having identical impulse responses $h(t)=2[u(t)-u(t-1)]$.
(06 Marks)
c. Find the Fourier series coefficients $X(k)$ for the signal $x(t)=\sum_{m=-\infty}^{\infty}[\delta(t-1 / 2 m)]$. Sketch the magnitude and phase spectra.
(08 Marks)

OR

6 a. Determine whether following system with the given impulse response is memoryless, causal and stable $h[n]=\left[\frac{1}{2}\right]^{\mathrm{n}} \mathrm{u}[\mathrm{n}]$.
(06 Marks)
b. Evaluate the DTFS representation for the signal $x(n)$ shown in Fig.6(b) and sketch its spectra.

Fig.Q6(b)
(08 Marks)
c. Find the Fourier series representation for the signal $X(t)=\sin (2 \pi t)+\cos (3 \pi t)$. Sketch the magnitude and phase spectra.
(06 Marks)

Module-4

7 a. Prove the following properties of Fourier transform :
i) Time shifting
ii) Time domain convolution.
(08 Marks)
b. Find the Fourier transform of the signal.
c. Find the DTFT of the signal shown in the Fig.Q7(c).

Fig.Q7(c)
(06 Marks)

OR

8 a. Explain the concept of sampling theorem and reconstruction of signals.
b. Find the DTFT of the sequence $x(n)=-a^{n} u[-n-1]$.
c. Find the Fourier transform of the signal $x(t)=e^{-3 t} u(t-1)$.
(06 Marks)

Module-5

9 a. Explain the properties of ROC.
(05 Marks)
b. Find the Z-transform and the ROC of the discrete sinusoid signal.
$\mathrm{x}[\mathrm{n}]=[\sin (\Omega \mathrm{n})] \mathrm{u}[\mathrm{n}]$.
(07 Marks)
c. Find the transfer function and difference equation if the impulse response is
$\mathrm{h}[\mathrm{n}]=\left[\frac{1}{3}\right]^{\mathrm{n}} \mathrm{u}[\mathrm{n}]+\left[\frac{1}{2}\right]^{\mathrm{n}} \mathrm{u}[\mathrm{n}-1]$.
(08 Marks)

OR
10 a. Using power series expansion technique or long division method find the inverse z-transform of the following $\mathrm{X}(\mathrm{z})$.

$$
\text { i) } X(z)=\frac{z}{2 z^{2}-3 z+1} ; \operatorname{ROC}|z|<1 / 2
$$

ii) $\mathrm{X}(\mathrm{z})=\frac{\mathrm{z}}{2 \mathrm{z}^{2}-3 \mathrm{z}+1} ; \mathrm{ROC}|\mathrm{z}|>1$.
(08 Marks)
b. Determine the z-transform of the following signal $x[n]=2^{n} u[n]$.

Also obtain ROC and locations of poles and zeroes of X(z).
(06 Marks)
c. Using z-transform find the convolution of the following two sequences
$\mathrm{h}[\mathrm{n}]=\left\{\frac{1}{\uparrow}, \frac{1}{2}, \frac{1}{4}\right\}$ and
$\mathrm{x}[\mathrm{n}]=\delta[\mathrm{n}]+\delta[\mathrm{n}-1]+4 \delta(\mathrm{n}-2)$.

